
Field Crop Spraying - Engineering for Drift Mitigation

Ken Giles, Professor

Biological and Agricultural Engineering Department, UC-Davis,
Davis, CA

SDTF / EPA / AAPSE Spray Drift Conference Sacramento, California, USA 5 September 2001

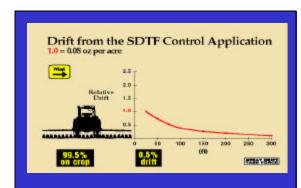
The holy triangle of application:

- **⇒ Efficacy**
 - $* \ \ Penetration, deposition \ and \ coverage$
- \Rightarrow Drift mitigation
 - * Prompt movement into the canopy with energy for deposition
- ⇒ Efficiency for the applicator
 - * Low volumes, high speeds, wide range of control

The design challenge:

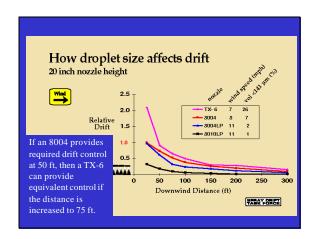
- \Rightarrow Quality of the application job
 - * Efficacy and reliability speed, rate, conditions
 - * Mitigation of off-site movement drift, run-off
- \Rightarrow Provide a quality job
 - * Active control of application input / output
- \Rightarrow Document the application
 - * GPS / GIS mapping of the process

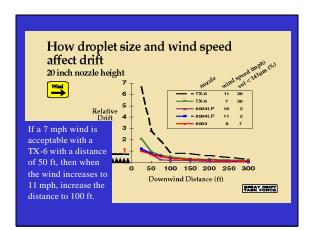
Drift Mitigation

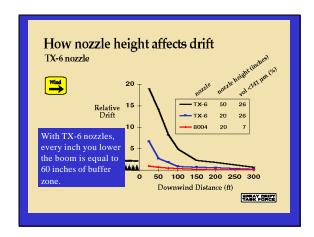

Requires that the spraying process <u>be understood</u>.

Requires that the applicator's situation, demands and likely response <u>be understood</u>.

<u>Drift</u> is caused by:

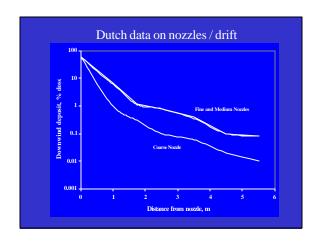

Droplets that:

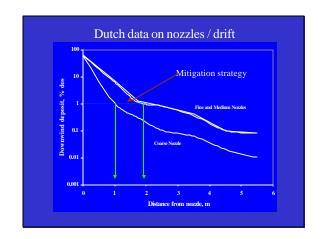

- are not deposited within the target canopy,
- are highly mobile,
- do not contribute to efficacy.

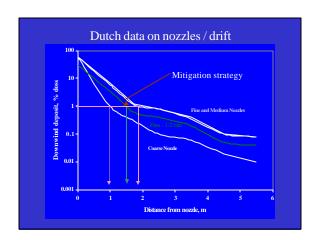


The "classic" drift curve (nonstandard presentation)

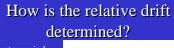
Drift mitigation (Giles, 2001) A rational, workable choice of proven conditions and compromises that achieve: the desired drift reduction while maintaining efficacy, responsible rates and productivity.



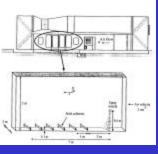




Models of drift? * Powerful, robust tools to estimate potential drift and effects of mitigation options * If they fully account for all aspects of the spray droplet transport process AND mitigation. * BUT they must be validated with proper experiments.



Local Environmental Risk Assessment for Pesticides (U.K.)


- Designed to protect waterways from drift fallout.
- Specifies an unsprayed buffer zone (UBZ) based on the width of the waterway, the dose of chemical applied and the performance of the sprayer.
- Assigns a "star rating" of *, **, or *** to the specific sprayer being used.

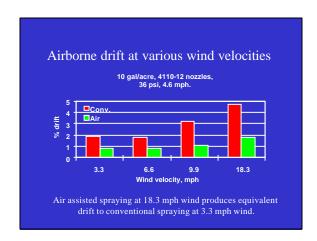
LERAP Buffer Zones in meters for a < 3 m wide waterway.				
Sprayer Rating	Full chemical rate	3/4 chemical rate		
*	4	2		
**	2	2		
***	1	1		

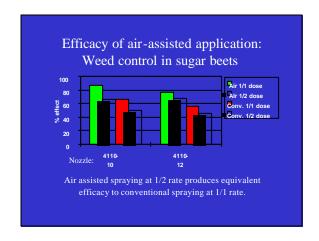
LERAP Star Ratings "Standard Treatment" of a 11003 nozzle @ 43 psi		
Relative Drift 50 - 75%	Sprayer Rating *	
25 - 50%	**	
< 25%	***	

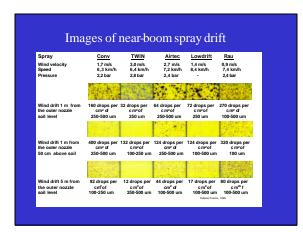
- 1. A laboratory wind tunnel is used to simulate a spray boom in a light wind.
- 2. A tracer dye is sprayed and recovered from sampling strings.
- 3. Recovered dye amounts are compared to those of the standard nozzle.

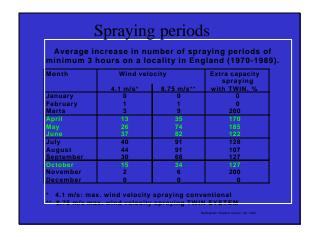
Models / experiments looking at droplet size, wind velocity and droplet velocity (OSU).

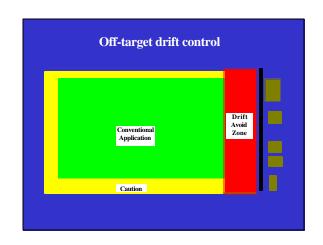
Drift distance of a droplet


Droplet dia.	Wind ve	l. Droplet vel.	Drift
(µm)	(m/s)	(m/s)	(m)
80	0.5	15	1.2
100	1.0	10	1.6
200	4.0	5	1.8

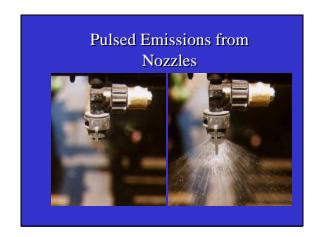

	Deposition & Eff	icacy.
Label rate	Spray vmd	Required dose
(l/ha)	(µm)	(l/ha)
	200	1.05
1.75	240	1.69
	395	1.81

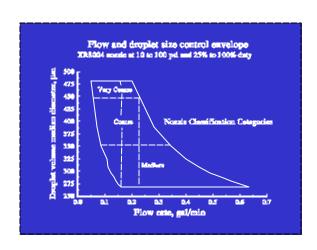

Why smaller droplets? <u>Deposition & Efficacy</u>				
Label rate	Spray vmd	Required dose		
(g/ha)	(µm)	(g/ha)		
	200	1.38		
7.5	240	1.70		
	395	8.90		
(95% weed contro	ıl w/ tribenuronmetyl+flurox	ipyr - data from SLU Uppsala)		

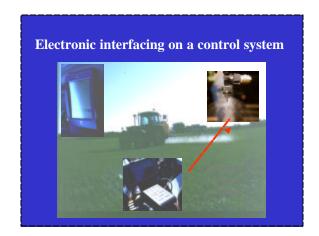


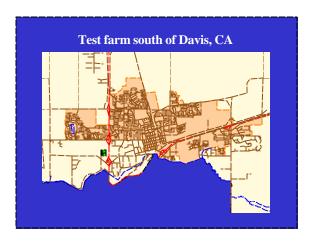


Spraying is not a static problem! Rate controllers are very common. Flow rate changes with ground speed Most vary pressure to accomplish this.

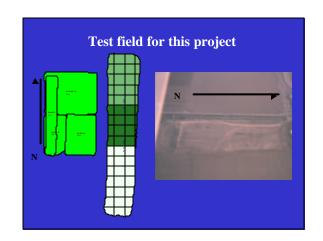


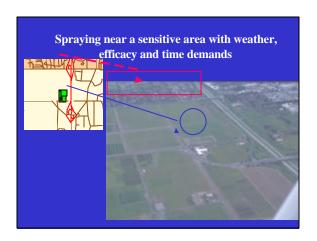

Example case: Blended pulse technology

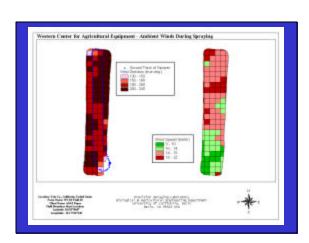

- Provides rapid and independent rate and droplet size control.
- Allows applicator to adjust to immediate, local conditions.
- Provides accountability
- In development: on-board drift models and control.

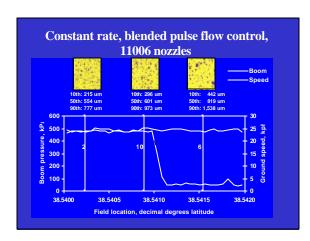

Pulsing the nozzles:

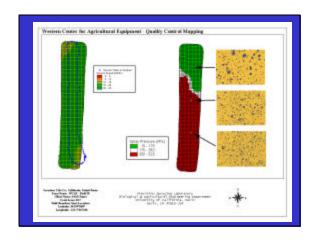
- Allows you to widely adjust the application rate (up to 8:1) without changing supply pressure.
- Maintains good pattern and uniformity.
- Gives an almost instant change.
- Allows wide pressure change to control droplet size and velocity.

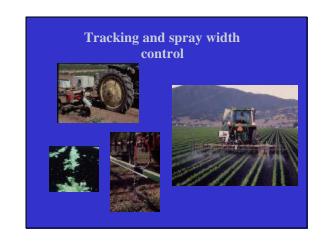


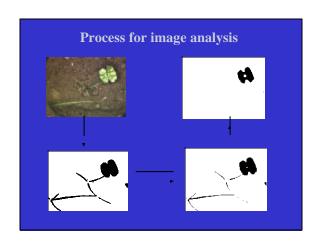


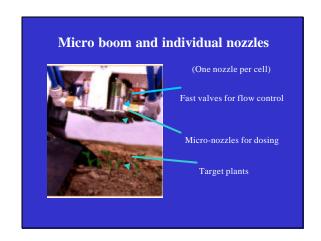


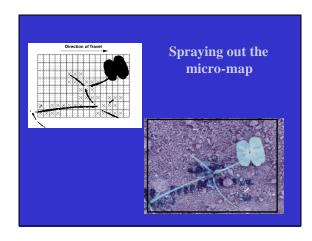












Conclusions

- Drift mitigation is a balance of controllable factors to achieve reliable drift control.
- Drift mitigation should be based on robust, engineering principles which consider all aspects of the pesticide application process.
- Technology and data supporting drift mitigation with targeted application and rate reduction are in place.